|
纯电动汽车动力电池系统解析一、动力电池系统 动力电池系统由电池箱外壳、电池包、电池管理系统、辅助元器件4部分组成,如图1所示。动力电池系统由电池箱外壳、电池包、电池管理系统、辅助元器件4部分组成,如图1所示。 图1 动力电池箱 1.外壳 2.电池包 图2 1P100S电池包 表1 EV200动力电池 3.电池管理系统 图3 电池管理系统框图 (2)主控盒的作用。如图4所示:①接收从控盒发来的实时模块电压和模组温度,并计算最大值和最小值;②接收高压盒发来的总电压和总电流;③通过新能源CAN与VCU、充电机等通信,通过快充CAN与直流充电桩、数据采集终端通信;④控制充放电电流(执行部件是车载充电机、直流快充桩和电机控制器);⑤控制动力电池加热。 图4 主控盒作用 (3)从控盒作用。亦称作电池信息采集盒,如图5所示:①实时监控每个模块电压;②实时监测每个模组的温度;③监测SCO值;④将以上监测到的数据传送给主控盒。 图5 从控盒作用 主控盒大多安装在电池箱内,也有安装在电池箱外。安装在电池箱内的,采取1主N从,称作分布式;主从合一称作集中式,如图6所示,这种型式如线束破损则容易产生安全隐患,还容易使BMS短路而烧毁。 图6 集中式BMS (4)高压盒作用。如图7所示:①监控动力电池总电压,包括主继电器的内外四个监测点(主正继电器内、主正继电器外、主负继电器内、主负继电器外);②监测充放电电流;③监控高压系统绝缘性(见后面介绍);④监控高压连接情况;⑤将以上监测到的数据传送给主控盒。 图7 高压盒相关电路 4.辅助元器件 图8 辅助元器件 (1)主正继电器,如图9所示,由BMS控制,作用是接通/断开动力电池正极。 图9 主正继电器 (2)预充继电器、预充电阻,如图10所示,由BMS控制,作用是接通/断开动力电池预充正极。预充电阻一般为100Ω,目的是通入小电流,预充电时检测单体电池有无短路;上电时先用小电流给电机控制器和电动压缩机控制器的电容器充电,因为电容器在充电开始时处于短路状态。 图10 预充继电器、预充电阻 (3)主负继电器,由整车vcu控制,接通/断开动力电池负极。 图11 高压熔断器 (5)电流传感器,型式有分流器和霍尔传感器两种,如图12所示。分流器是一个阻值很小的电阻,当有直流电通过电阻时产生电压降,根据欧姆定律,电流=电压/电阻,就可计算出电流值。霍尔传感器是半导体材料制成的磁电转换器件,高压电缆穿过该器件,电缆周围产生磁场;传感器输入端通入电流,输出端产生与高压电缆电流成比例的霍尔电势,就可计算出电流值。 图12 电流传感器 (6)加热继电器与加热熔断器,如图13所示,适用磷酸铁锂电池,该电池低温充放电性能差,在低温如不加热充电或放电,会降低电池循环寿命,电池温度范围为0~50℃。 图13 加热继电器 (7)高压插座,用来连接通往高压盒的高压电缆,EV200电动车高压插座如图14所示,插孔1为高压-,插孔2为高压+。 图14 高压插座 (8)低压插座,用来连接低压线束,北汽新能源EV200的低压插座示意图如图15所示,端子含义见表2。 图15 低压插座 表2 低压插座端子定义 二、BMS控制原理 1.BMS功能 ①电池不一致性,是指随着循环充放电次数增加和工作环境变化,出现单体电压、容量、内阻不一致,降低电池容量,影响电池使用寿命。如图16所示,先看均衡前,某个模块已达到放电终止电压(下限保护电压),其他模块还有一定的电量,这时不能继续放电;充电后某个模块已达到充电终止电压(上限保护电压),这时不能继续充电;可以看出均衡前电池总电量减小。再看均衡后,增加了电量差,电池的电量增加。图中每个模块电量的长短不同,说明容量不一致。 图16 均衡前后的电量对比 图17 各模块电压 (5)热管理。①在低温情况下对电池包加热。②电池自身有内阻,电流流动产生热量,热量累积温度升高,当超出正常温度会影响电性能和寿命,BMS监测各模组温度,通过冷却液循环或通风散热。 (1)慢充电。BMS通过新能源CAN连接VCU、驱动电机控制器、车载充电机、DC/DC控制器、PTC控制器、电动压缩机控制器、诊断接口。早期有的车型BMS通过慢充总线连接车载充电机、数据采集终端。当插上慢充枪,VCU唤醒BMS由睡眠状态转为工作状态,VCU接通电池箱内的主负继电器,BMS先接通预充继电器,再接通主正继电器而断开预充继电器。BMS根据动力电池总电压、模块电压、模组温度,由充电机调节充电电流,慢充电过程需要8~10h(常温25℃,0→100%SOC)。 (2)快充电。BMS通过快充CAN连接直流快充桩、RMS数据采集终端、诊断接口。当插上快充枪,BMS将充电需求送给直流快充桩,由直流快充桩调节充电电流,快充电过程需要30~45min(常温 25℃,30%→80%SOC)。 3.充电前加热 图18 慢充加热回路 (2)快充加热回路,如图19所示:直流充电桩→高压盒+→升加热继电器触点→加热膜→加热熔断器→高压盒→升直流充电桩。 图19 快充加热回路 4.预充电
(2)快充预充电,是由直流充电桩提供电源。 5.充电 图21 慢充回路 (2)快充回路,如图22所示:直流充电桩→高压+→主正继电器触点→电池模组→维修开关(内有熔断器)→电池模组→电流传感器→主负继电器触点→高压-→直流充电桩。 图22 快充回路 6.上电
(2)上电回路。当电容电压等于动力电池电压,BMS闭合主正继电器,断开预充继电器,如图24所示:动力电池+。主正继电器触点→高压+→负载斗高压-→主负继电器触点→电流传感器(分流器)→动力电池-。 图24 上电回路 7.绝缘监测 图25 绝缘监测回路 (1)电池正监测回路,动力电池+→绝缘监测电阻→主正绝缘监测继电器→搭铁。 |